首页 | 本学科首页   官方微博 | 高级检索  
     


Control gain adaptation in virtual reality mediated human–telerobot interaction
Authors:Mohamed A Sheik‐Nainar  David B Kaber  Mo‐Yuen Chow
Abstract:The Internet connects millions of computers worldwide, and provides a new potential working environment for remote‐controlled telerobotic systems. The main limitation of using the Internet in this application is random delays between communicating nodes, which can cause disturbances in human–machine interaction and affect telepresence experiences. This is particularly important in systems integrating virtual reality technology to present interfaces. Telepresence, or the sense of presence in a remote environment, hypothetically is positively related to teleoperation task performance. This research evaluated the effect of constant and random network (communication) delays on remote‐controlled telerover performance, operator workload, and telepresence experiences. The research also assessed the effect of using a system gain adaptation algorithm to offset the negative impact of communication delays on the various response measures. It was expected that with gain adaptation, system stability, performance, and user telepresence experiences would improve with a corresponding decrease in workload. Results indicated that gain adaptation had a significant effect on the performance measures. The study demonstrated that gain adaptation could reduce deterioration in telepresence experiences and improve user performance in teleoperated and telerobotic control. © 2005 Wiley Periodicals, Inc. Hum Factors Man 15: 259–274, 2005.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号