Abstract: | Shared buffering and channel grouping are powerful techniques with great benefits in terms of both performance and implementation. Shared‐buffer switches are known to have better performance and better utilization than input or output queued switches. With channel grouping, a cell is routed to a group of channels instead of a specific output channel. In this way, congestion due to output contention can be minimized and the switch performance can therefore be greatly improved. Although each technique is well known by itself in the traditional study of queuing systems, their combined use in ATM networks has not been much explored previously. In this paper, we develop an analytical model for a shared‐buffer ATM switch with grouped output channels. The model is then used to study the switch performance in terms of cell loss probability, cell delay and throughput. In particular, we study the impact of the channel grouping factor on the buffer requirements. Our results show that grouping the output channels in a shared‐buffer ATM switch leads to considerable savings in buffer space. Copyright © 2001 John Wiley & Sons, Ltd. |