首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的小样本声目标识别方法
引用本文:王鹏程,崔敏,李剑,王彦博,赵欣,孔庆珊. 基于深度学习的小样本声目标识别方法[J]. 计算机测量与控制, 2021, 29(4): 217-221. DOI: 10.16526/j.cnki.11-4762/tp.2021.04.043
作者姓名:王鹏程  崔敏  李剑  王彦博  赵欣  孔庆珊
作者单位:中北大学信息探测与处理山西省重点实验室,太原 030051;北方科技信息研究所,北京 100089;山东省军区数据信息室,济南 250099
基金项目:国家自然基金青年科学基金(61901419)、山西省面上青年资金(201801D221205)、山西省高校创新项目(201802083)、装备预研兵器工业联合基金(6141B012895)、装备预研兵器装备联合基金(6141B021301)、山西省高等学校科技成果转换培育项目(2020CG038)
摘    要:声目标分类识别是声源识别领域的核心问题,然而,在应用深层神经网络进行声目标分类识别时,从少量样本中学习(样本复杂度较低)是一个具有挑战性的问题;针对此问题,提出了一种基于深度学习的小样本声目标识别方法,该方法将手工设计特征和对数梅尔声谱特征结合到一起,扩充了深度学习模型的可利用特征量,提高了声信号识别效率和精度;在实验验证中,该方法在测试集上实现了87.6%的识别精度;更进一步地,用较少量的训练样本对该方法和其它几种主流的深度学习模型的性能进行了比较验证,结果表明,该方法只需要更少量的数据即可实现同样的识别精度,在声源探测领域具有一定应用价值。

关 键 词:声源探测  声目标分类识别  特征工程  深度学习  深度残差网络
收稿时间:2020-09-03
修稿时间:2020-10-03

Small sample acoustic target recognition method based on deep learning
Wang Pengcheng,Cui Min,Li Jian,Wang Yanbo,Zhao Xin,Kong Qingshan. Small sample acoustic target recognition method based on deep learning[J]. Computer Measurement & Control, 2021, 29(4): 217-221. DOI: 10.16526/j.cnki.11-4762/tp.2021.04.043
Authors:Wang Pengcheng  Cui Min  Li Jian  Wang Yanbo  Zhao Xin  Kong Qingshan
Affiliation:(Shanxi Province Key Laboratory of Information Detection and Processing,North University of China,Taiyuan 030051,China;North Institute of Science and Technology Information,Beijing 100089,China;Data and Information Room of Shandong Military Region,Jinan 250099,China)
Abstract:Acoustic target classification and recognition is the core problem in the field of sound source recognition. However, learning from a small number of samples (low sample complexity) is a challenging problem in the application of deep neural network to acoustic target classification and recognition. In order to solve this problem, a method of small sample acoustic target recognition based on deep learning is proposed. The method combines manual design features with logarithmic Mel spectrum features, which expands the available features of deep learning model and improves the efficiency and accuracy of acoustic signal recognition. In the experimental verification, the recognition accuracy of this method is 87.6% on the test set; furthermore, the performance of the method is compared with other mainstream deep learning models with a small number of training samples. The results show that the method can achieve the same recognition accuracy with only a small amount of data, which has certain application value in the field of sound source detection.
Keywords:Acoustic source detection   acoustic target classification and recognition   feature engineering   deep learning   deep residual network
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机测量与控制》浏览原始摘要信息
点击此处可从《计算机测量与控制》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号