LBSN中融合时空信息的连续兴趣点推荐 |
| |
作者姓名: | 李丹霞 马乐荣 何景 |
| |
作者单位: | 延安大学数学与计算机科学学院,陕西延安716000;北京理工大学计算机学院,北京100081;延安大学数学与计算机科学学院,陕西延安716000;北京理工大学计算机学院,北京100081 |
| |
基金项目: | 陕西省自然科学基金资助项目(2016JM6082);国家自然科学基金资助项目(61751217) |
| |
摘 要: | 针对位置社交网络(location-based social networks,LBSN)中连续兴趣点(point-of-interest,POI)推荐系统面临的数据稀疏性、签到数据的隐式反馈属性、用户的个性化偏好等挑战,提出一种融合时空信息的连续兴趣点推荐算法。该算法将用户的签到行为建模为用户—当前兴趣点—下一个兴趣点—时间段的四阶张量,并利用LBSN中的地理信息定义用户访问兴趣点的地理距离偏好,最后采用BPR(Bayesian personalized ranking)标准优化目标函数。实验结果表明该算法相比其他先进的连续兴趣点推荐算法具有更好的推荐效果。
|
关 键 词: | 兴趣点 推荐系统 位置社交网络 张量分解 |
收稿时间: | 2018-07-16 |
修稿时间: | 2019-10-27 |
本文献已被 万方数据 等数据库收录! |
| 点击此处可从《计算机应用研究》浏览原始摘要信息 |
|
点击此处可从《计算机应用研究》下载全文 |
|