首页 | 本学科首页   官方微博 | 高级检索  
     


Finite element modelling of concrete-filled lean duplex stainless steel tubular stub columns
Authors:M. Longshithung Patton  Konjengbam Darunkumar Singh
Affiliation:1. Department of Civil Engineering, National Institute of Technology, Meghalaya, India
2. Department of Civil Engineering, Indian Institute of Technology, Guwahati, India
Abstract:This paper presents a finite element (FE) study on concrete-filled lean duplex slender stainless steel tubular (CFDSST) stub columns of square and L-, T-, and +-shape (Non-Rectangular Sections or NRSs) sections under pure axial compression. The effect of cross-sectional shape and concrete compressive strength, by considering equal steel consumption (i.e. equal cross-sectional area) for all the square and NRSs sections have been reported. In CFDSST stub columns, the axial deformation (δ u ) at ultimate load (P u ) decreases with increasing concrete strengths, but increases as the sections changes from Square→L→T→+-shape. For normal concrete strength (≤40 MPa), NRSs appear to have similar or slightly enhanced P u , in comparison with the representaive square section. But in the case of a high strength concrete core (i.e. >40 MPa), NRSs are clearly at a disadvantage as far as the values of P u is concerned, however as the NRSs are lighter by 37%, they still offer an attractive option for the designers. The FE strengths over predicts the EN 1994-1-1 (2004) specification by about an average of 21, 19, 14, and 4% for the square, L, T, and +-shape sections, respectively.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号