Photodegradation of estrone and 17beta-estradiol in water |
| |
Authors: | Zhang Y Zhou J L Ning B |
| |
Affiliation: | Department of Biology and Environment Science, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, UK. |
| |
Abstract: | The TiO(2)-assisted photodegradation of two natural female hormones, estrone (E1) and 17beta-estradiol (E2), was investigated in two UV-photo-reactors, followed by solid-phase extraction and analysis by gas chromatography-mass spectrometry (GC-MS). The degradation of E1 and E2 in both reactors followed the pseudo-first-order kinetics. In reactor 1 (150W), 97% of compounds were degraded within 4h of irradiation. Even more rapid degradation was observed in reactor 2 (15W) where 98% of both compounds disappeared within 1h, due to the shorter wavelength of UV-light in reactor 2 (fixed at 253nm) than reactor 1 (238-579nm). The influences of different initial chemical concentrations, pH value, the presence of dissolved organic matter and hydrogen dioxide, and the catalyst concentration on the degradation rate of E1 and E2 in aqueous solutions were investigated. The results show that the extent of photo-induced degradation of E1 and E2 strongly depends on the water constituents in solution. The degradation rate was increased when pH value was increased from 2 to 7.6, beyond which the degradation rate started to decrease. The presence of humic acid enhanced the degradation of E1 and E2 in both reactors as a result of photosensitisation effect of humic acid chromophore. The degradation rate increased with an increase in H(2)O(2) concentration. The degradation rate was also enhanced by increasing catalyst concentration up to 2g/l. The findings therefore suggest that photocatalysis can be a very effective method of rapidly removing certain EDCs from water. |
| |
Keywords: | EDCs Photodegradation Estrone 17β-Estradiol GC-MS TiO2 |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|