首页 | 本学科首页   官方微博 | 高级检索  
     


On the Feedback Capacity of Power-Constrained Gaussian Noise Channels With Memory
Authors:Shaohua Yang Aleksandar Kavcic Sekhar Tatikonda
Affiliation:Marvell Semicond. Inc, Santa Clara, CA;
Abstract:For a stationary additive Gaussian-noise channel with a rational noise power spectrum of a finite-order L, we derive two new results for the feedback capacity under an average channel input power constraint. First, we show that a very simple feedback-dependent Gauss-Markov source achieves the feedback capacity, and that Kalman-Bucy filtering is optimal for processing the feedback. Based on these results, we develop a new method for optimizing the channel inputs for achieving the Cover-Pombra block-length- n feedback capacity by using a dynamic programming approach that decomposes the computation into n sequentially identical optimization problems where each stage involves optimizing O(L 2) variables. Second, we derive the explicit maximal information rate for stationary feedback-dependent sources. In general, evaluating the maximal information rate for stationary sources requires solving only a few equations by simple nonlinear programming. For first-order autoregressive and/or moving average (ARMA) noise channels, this optimization admits a closed-form maximal information rate formula. The maximal information rate for stationary sources is a lower bound on the feedback capacity, and it equals the feedback capacity if the long-standing conjecture, that stationary sources achieve the feedback capacity, holds
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号