首页 | 本学科首页   官方微博 | 高级检索  
     


Controlled,Low‐Temperature Nanogap Propagation in Graphene Using Femtosecond Laser Patterning
Authors:Ange Maurice  Laurence Bodelot  Beng Kang Tay  Bérengère Lebental
Affiliation:1. NOVITAS, Nanoelectronics Center of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore;2. CINTRA, CNRS International NTU THALES Research Alliance, Research Techno Plaza, Singapore, Singapore;3. Laboratoire de Mécanique des Solides, Ecole Polytechnique, CNRS, Université Paris‐Saclay, Palaiseau, France;4. LPICM, CNRS, Ecole Polytechnique, Université Paris‐Saclay, Palaiseau, France;5. Université Paris‐Est, IFSTTAR, COSYS, Marne‐La‐Vallée, France
Abstract:Graphene nanogap systems are promising research tools for molecular electronics, memories, and nanodevices. Here, a way to control the propagation of nanogaps in monolayer graphene during electroburning is demonstrated. A tightly focused femtosecond laser beam is used to induce defects in graphene according to selected patterns. It is shown that, contrary to the pristine graphene devices where nanogap position and shape are uncontrolled, the nanogaps in prepatterned devices propagate along the defect line created by the femtosecond laser. Using passive voltage contrast combined with atomic force microscopy, the reproducibility of the process with a 92% success rate over 26 devices is confirmed. Coupling in situ infrared thermography and finite element analysis yields a real‐time estimation of the device temperature during electrical loading. The controlled nanogap formation occurs well below 50 °C when the defect density is high enough. In the perspective of graphene‐based circuit fabrication, the availability of a cold electroburning process is critical to preserve the full circuit from thermal damage.
Keywords:electroburning  defect  femtosecond lasers  graphene  nanogaps
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号