首页 | 本学科首页   官方微博 | 高级检索  
     

改进型重复Wiener滤波/PUM模型--实现抗噪连续语音识别
引用本文:林劼,Ji Ming,刘玓. 改进型重复Wiener滤波/PUM模型--实现抗噪连续语音识别[J]. 计算机工程与应用, 2006, 42(11): 41-44,79
作者姓名:林劼  Ji Ming  刘玓
作者单位:电子科技大学计算机科学与工程学院,成都,610054;英国贝尔法斯特女王大学计算机科学系
摘    要:众所周知,抗噪问题是现在语音识别研究中的重点。文章描述了一种新的抗噪语音识别方法,即通过改进型重复Wiener滤波结合后验概率联合模型PUM(PosteriorUnionModel)[3]实现在噪声环境下连续字语音识别的方法。这种方法先采用改进型重复Wiener滤波器对语音信号进行语音增强预处理,消除已知噪声,为PUM模型提供只有局部频带被噪声污染的语音信号,再利用PUM模型进行抗噪语音识别。试验表明在各种不同的噪声环境下新方法有更高的平均识别率。

关 键 词:重复  Wiener  滤波  PUM模型  抗噪语音识别
文章编号:1002-8331-(2006)11-0041-04
收稿时间:2005-07-01
修稿时间:2005-07-01

Improved Iterative Wiener Filters and Posterior Union Model Robust Speech Recognition
Lin Jie,Ji Ming,Liu Di. Improved Iterative Wiener Filters and Posterior Union Model Robust Speech Recognition[J]. Computer Engineering and Applications, 2006, 42(11): 41-44,79
Authors:Lin Jie  Ji Ming  Liu Di
Abstract:In this paper we present a new approach towards robust automatic speech recognition in adverse conditions. This new method is based on the combination of a speech enhancement using Improved Iterative Wiener Filters,and Posterior Union Model(PUM)[3] to dynamically modify the probability computations performed in GMM recognizers. Previous work has demonstrated that the PUM succeeds in robust speech recognition with some interruptions and band-limited noises. In this paper,we show that this new method more improves ratio of speech recognition in wide-band noisy conditions.
Keywords:Wiener
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号