首页 | 本学科首页   官方微博 | 高级检索  
     


Kinetic and thermodynamic studies of purine repressor binding to corepressor and operator DNA
Authors:H Xu  M Moraitis  RJ Reedstrom  KS Matthews
Affiliation:Department of Biochemistry & Cell Biology, Rice University, Houston, Texas 77005, USA.
Abstract:The kinetic and thermodynamic parameters for purine repressor (PurR)-operator and PurR-guanine binding were determined using fluorescence spectroscopy and nitrocellulose filter binding. Operator binding affinity was increased by the presence of guanine as demonstrated previously (Choi, K. Y., Lu, F., and Zalkin, H. (1994) J. Biol. Chem. 269, 24066-24072; Rolfes, R. J., and Zalkin, H. (1990) J. Bacteriol. 172, 5637-5642), and conversely guanine binding affinity was increased by the presence of operator. Guanine enhanced operator affinity by increasing the association rate constant and decreasing the dissociation rate constant for binding. Operator had minimal effect on the association rate constant for guanine binding; however, this DNA decreased the dissociation rate constant for corepressor by approximately 10-fold. Despite significant sequence and structural similarity between PurR and LacI proteins, PurR binds to its corepressor ligand with a lower association rate constant than LacI binds to its inducer ligand. However, the rate constant for PurR-guanine binding to operator is approximately 3-fold higher than for LacI binding to its cognate operator under the same solution conditions. The distinct metabolic roles of the enzymes under regulation by these two repressor proteins provide a rationale for the observed functional differences.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号