Optimization of laccase mediated biodegradation of 2,4-dichlorophenol using genetic algorithm |
| |
Authors: | S.S. Bhattacharya R. Banerjee |
| |
Affiliation: | a Microbial Biotechnology and Downstream Processing Laboratory, Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur-721 302, India b Department of Industrial Engineering and Management, Indian Institute of Technology, Kharagpur-721 302, India |
| |
Abstract: | The present investigation focuses on the development of an effective strategy to determine the optimum environmental conditions leading to the maximum rate of biodegradation of 2,4-DCP by coupling response surface methodology (RSM) with a developed genetic algorithm (GA) thereby ensuring minimum contact time. RSM is utilized to create an efficient analytical model for biodegradation of 2,4-DCP in terms of environmental parameters: pH, temperature, enzyme activity and time of incubation. For this purpose, a number of degradation experiments based on statistical three-level Box Behnken design methods were carried out. An effective response surface (RS) model is developed by carrying out experiments designed using the Box Behnken method. The RS model thus developed is further interfaced with the GA to optimize the degradation conditions for optimum degradation with minimum contact time. The GA increases the biodegradation conditions to >99% within a time period of 8 h within the given range of experimental conditions. The conditions obtained from GA were verified experimentally. |
| |
Keywords: | Box Behnken design Genetic algorithm 2,4-DCP Response surface methodology Crossover Mutation |
本文献已被 ScienceDirect 等数据库收录! |
|