首页 | 本学科首页   官方微博 | 高级检索  
     


A finite element analysis of cracked square plates and bars under antiplane loading
Authors:L. P. POOK
Affiliation:Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE
Abstract:
ABSTRACT Finite element analyses were carried out on cracked 20 mm square plates and bars ranging in thickness from 2.5 mm to a length of 60 mm. The crack extended from the middle of one side of the square to its centre, and was modelled as a narrow, parallel‐sided notch with a semicircular tip. An antiplane loading was applied to the side containing the crack. An infinitely long bar under the antiplane loading used is in pure Mode III. It was found that the central portions of 40, 56 mm and 60 mm long bars were in pure Mode III, and also that KIII was approximately constant. These central portions were therefore representative of an infinitely long bar. Towards the ends of a bar KIII decreased. At the ends of a bar corner point effects meant that Mode II stress intensity factors and displacements were induced in the corner region. The size of the corner region was independent of bar length. In the 2.5, 5 and 10 mm thick plates out of plane bending means that the antiplane loading became a mixed Mode II and Mode III loading. At a centre line KII is zero by symmetry. Behaviour in the corner region was a function of plate thickness. For both plates and bars, as has been predicted theoretically, the ratio KII/KIII tends to a constant value as a surface is approached. For a thickness of 20 mm, that is a 20‐mm cube, behaviour represents a transition between plate and bar behaviour.
Keywords:corner point singularities    cracks    finite element analysis    stress intensity factors
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号