首页 | 本学科首页   官方微博 | 高级检索  
     


Starch‐g‐polycaprolactone copolymerization using diisocyanate intermediates and thermal characteristics of the copolymers
Authors:Dong‐Keon Kweon  Dong‐Soo Cha  Hyun‐Jin Park  Seung‐Taik Lim
Abstract:Starch‐g‐polycaprolactone copolymers were prepared by two‐step reactions. The diisocyanate‐terminated polycaprolactone (NCO–PCL) was prepared by introducing NCO on both hydroxyl ends of PCL using diisocyanates (DI) at a molar ratio between PCL and DI of 2:3. Then, the NCO–PCL was grafted onto corn starch at a weight ratio between starch and NCO–PCL of 2:1. The chemical structure of NCO–PCL and the starch‐g‐PCL copolymers were confirmed by using FTIR and 13C‐NMR spectrometers, and then the thermal characteristics of the copolymers were investigated by DSC and TGA. By introducing NCO to PCL (Mn : 1250), the melting temperature (Tm ) was reduced from 58 to 45°C. In addition, by grafting the NCO–PCL (35–38%) prepared with 2,4‐tolylene diisocyanate (TDI) or 4,4‐diphenylmethane diisocyanate (MDI) onto starch, the glass transition temperatures (Tg 's) of the copolymers were both 238°C. With hexamethylene diisocyanate (HDI), however, Tg was found to be 195°C. The initial thermal degradation temperature of the starch‐g‐PCL copolymers were higher than that of unreacted starch (320 versus 290°C) when MDI was used, whereas the copolymers prepared with TDI or HDI underwent little change. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 986–993, 2000
Keywords:starch‐g‐polycaprolactone copolymer  diisocyanate‐terminated polycaprolactone  thermal properties
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号