首页 | 本学科首页   官方微博 | 高级检索  
     

图像过完备稀疏表示理论及应用综述
引用本文:陈垚佳,张永平. 图像过完备稀疏表示理论及应用综述[J]. 电视技术, 2012, 36(17): 40-43,66. DOI: 10.3969/j.issn.1002-8692.2012.17.012
作者姓名:陈垚佳  张永平
作者单位:1.宁波工程学院电子与信息工程学院,浙江宁波315211;太原理工大学信息工程学院,山西太原030024;2.宁波工程学院电子与信息工程学院,浙江宁波,315211
基金项目:国家教育部回国人员科研启动基金
摘    要:超完备字典稀疏表示作为一种有效表示模型,广泛应用于各种信号和图像处理任务中.介绍了稀疏表示的理论框架以及主要研究方向,分别从稀疏表示的可重构性和区分性两方面对其在图像处理及图像分析领域的应用进行综述.

关 键 词:稀疏表示  过完备字典  稀疏系数  图像处理  图像分析
收稿时间:2012-03-03
修稿时间:2012-03-05

Sparse Representation Theory and its applications of image: A survey
chenyaojia and zhangyongping. Sparse Representation Theory and its applications of image: A survey[J]. Ideo Engineering, 2012, 36(17): 40-43,66. DOI: 10.3969/j.issn.1002-8692.2012.17.012
Authors:chenyaojia and zhangyongping
Affiliation:.College of Information Engineering, Taiyuan University of Technology,(1.School of Electronic and Information Engineering, Ningbo University of Technology
Abstract:The representation of the image is a crucial problem to be solved in the field of image processing and analysis. Recently, the sparse representations over learned redundant dictionaries has been widely applied into kinds of signal and image processing tasks. In this paper the theory and the research direction of the sparse representations has been introduced. Meanwhile, its application in the image processing and analysis domain has been summarized from re-configurability and distinguishability of sparse representations.
Keywords:sparse representation   redundant dictionary   sparse coefficients   image processing   image analysis
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《电视技术》浏览原始摘要信息
点击此处可从《电视技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号