首页 | 本学科首页   官方微博 | 高级检索  
     


Lipase-catalyzed alcoholysis of crambe oil and camelina oil for the preparation of long-chain esters
Authors:Georg Steinke  Rita Kirchhoff  Kumar D Mukherjee
Affiliation:(1) Institute for Biochemistry and Technology of Lipids, H.P. Kaufmann-Institute, Federal Centre for Cereal, Potato and Lipid Research, Piusallee 68, D-48147 Münster, Germany
Abstract:Crambe oil and camelina oil were transesterified with oleyl alcohol, the alcohols derived from crambe and camelina oils, n-octanol or isopropanol using Novozym 435 (immobilized lipase B from Candida antarctica), Lipozyme IM (immobilized lipase from Rhizomucor miehei), and papaya (Carica papaya) latex lipase as biocatalysts. The highest conversions to alkyl esters were obtained with Novozym 435 (up to 95%) in most cases, whereas Lipozyme IM and papaya latex lipase gave lower (40 to 50%) conversions. The conversions with long-chain alcohols (oleyl alcohol, crambe alcohols, and camelina alcohols) were higher (40 to 95%) than with medium-chain n-octanol (30 to 85%). Isopropyl esters of crambe oil and camelina oil were obtained with rather low conversions using Novozym 435 (<40%) and Lipozyme IM (about 10%) as biocatalysts, whereas with papaya latex lipase no isopropyl esters were formed. The conversions of crambe oil and camelina oil to oleyl and n-octyl esters using Novozym 435 as biocatalyst were hardly affected by the ratio of the substrates, but with Lipozyme IM the conversions to alkyl esters distinctly increased with an excess of alcohol substrate Presented as part of the doctoral thesis of Georg Steinke to the University of Münster, Münster, Germany
Keywords:Bio-esters  camelina oil  crambe oil  jojoba oil analog  lipase-catalyzed alcoholysis  long-chain esters  transesterification
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号