摘 要: | 集合经验模式分解(EnsembleEmpiricalModeDecomposition,EEMD)存在着辅助白噪声难以消除和容易产生虚假模式的缺陷。针对EEMD方法在齿轮箱故障信号处理中的不足,将自适应噪声完备集合经验模式分解(CompleteEnsembleEmpiricalModeDecompositionwithAdaptiveNoise,CEEMDAN)应用于齿轮故障信号分析,提出了基于CEEMDAN能量熵的齿轮状态识别方法。该方法首先利用CEEMDAN分解齿轮振动信号,然后计算振动信号分解结果的能量熵,将能量熵作为特征参数来区分不同的齿轮运行状态。将该方法用于区分正常、轻度刮伤和中度刮伤齿轮运行状态,并与基于EMDEEMD能量熵的方法进行了对比。结果表明,该方法可以有效地区分相近的齿轮运行状态,与其他几种方法相比具有明显的优势。
|