首页 | 本学科首页   官方微博 | 高级检索  
     


Internal validation of near-crashes in naturalistic driving studies: A continuous and multivariate approach
Authors:Jenny K. Jonasson,Holger Rootzé  n
Affiliation:Department of Mathematical Statistics, Chalmers and Gothenburg University, SE-412 96 Gothenburg, Sweden
Abstract:Large naturalistic driving studies give extremely detailed insight into how traffic accidents happen and what causes them. However, even in very large studies there are only relatively few crashes. Hence one additionally selects and studies crash surrogates, so called “near-crashes”, i.e. situations when a crash almost happened. The selection procedures invariably entail severe risks of causing bias. In this paper we use extreme value statistics to develop two methods to study the extent and form of this bias. The methods are applied to a large naturalistic driving study, the 100-car study. Both methods identified a severe discrepancy between the rear-striking near-crashes and the rear-striking crashes. Perhaps surprisingly, one conclusion is that, for rear-striking and in this study, the crashes have little relevance for increasing traffic safety. We believe substantial efforts should be made to develop statistical methods for using near-crashes and crashes in future large naturalistic driving studies (such as the SHRP2 study).
Keywords:Traffic safety   Rear-ending crash   Crash surrogate   Selection bias   Naturalistic driving study   Extreme value statistics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号