首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of Si,C and Mn on the formation of bainite in ferrite-bainite steel
Authors:ZHANG Jiansu  HONG Jiyao  and DU Peifang  Auto Steel Division  Research Institute  Baoshan Iron & Steel Co  Ltd  Shanghai  China  State
Affiliation:Key Laboratory of Development and Application Technology of Automotive Steels (Baosteel),Shanghai 201900,China
Abstract:High-strength steels have been widely applied to automotive chassis parts.In order to form complex shapes,high hole expansion rates and high formability are required.Dual phase (DP) steel has a good formability,but a poor hole expansion rate.In this circumstance,another kind of steel which has a microstructure of ferrite-bainite,rather than ferrite-martensite,has been found to be an alternative solution.It is called FB steel.This steel with Si,C and Mn additions are applied in this study.A two-step cooling process is used to get the desired F+ B microstructures.Continuous cooling transformation (CCT) diagrams are made with deformation and without deformation,and starting times and temperatures of the phase transformations of interest are obtained.It is shown that Si,C and Mn contents in the steel strongly affect the shapes and positions of the CCT diagrams,as well as the final microstructures of FB steel.An increase of the Si content can promote the formation of ferrite and move the CCT diagram toward the left.However,when Si content is too high,when comparing to carbon and manganese contents,the formation of bainite will be retarded because of the formation of more ferrite.It increases the amount of C in a solid solution in the untransformed austenite and promotes the formation of pearlite.C and Mn can inhibit the formation of ferrite and retard the accumulation of C in austenite.Therefore,the appropriate balance of C,Si and Mn contents in steels will be able to help in obtaining the desired microstructure.
Keywords:FB steel  microstructure  CCT diagram
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号