首页 | 本学科首页   官方微博 | 高级检索  
     


Detection unit optimization of a neutron searching detector using Monte Carlo Simulations
Authors:S. KorotkinU. Wengrowicz  I. Orion
Affiliation:a Nuclear Research Center-Negev, P.O.B. 9001, Beer-Sheva 84190, Israel
b Department of Nuclear Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
Abstract:
The NSD is a portable Neutron Searching Detector developed at Rotem Industries Ltd. with a high efficiency for counting fast and thermal neutrons employing improved gamma rejection. The NSD detection-unit consists of two 3He detectors installed within a polypropylene moderator. The latest international standards for detection of illicit trafficking of radioactive materials require high sensitivity, relatively small dimensions, and light mass. In order for it to meet these standards, the NSD detection-unit was optimized using Monte Carlo N-Particle transport code (MCNP). The moderator mass and dimensions were reduced without deterioration, even improving the instrument's sensitivity. The purposed moderator improvements covered in this paper work well for traditional hand-held neutron search detectors based on 3He tubes as well as for new neutron detection technologies due to the severe worldwide shortage of 3He.Three geometrical moderator configurations were examined using the MCNP code—a rectangular box, a circular cylinder, and an elliptical base cylinder. The optimization results showed that both the rectangular box moderator and the elliptical base cylinder moderators achieve the appropriate sensitivity required by the standards with about 30% reduced mass. A prototype was fabricated with the rectangular box moderator configuration, and its response was successfully validated by comparing empirical measurements against the results of the MCNP code.Performance examination of the optimal detection unit prototype was made regarding the latest international standards. The results showed a 17% improvement in detection limit for radioactive materials along with a 14% to 17% increased neutron detection response, while keeping the false alarm rate below the required threshold, and maintaining a 26% mass reduction.
Keywords:Handheld detector   Fast neutrons   Monte Carlo   Simulations   Border radiation monitoring
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号