摘 要: | 工业废水含有多种污染物,提前预测工业废水水质从而快速对其进行相应处理具有重要意义。为此,研究提出了一种新的卷积神经网络(convolutional neural network, CNN)和长短期记忆网络(long short-term memory, LSTM)融合的工业废水水质污染物指标预测模型(CNN-LSTM)。为了更好地捕捉工业废水数据的时序性和动态性,模型设置了多个滑动窗口。使用CNN算法将时间序列数据进行高维特征提取,利用LSTM模型学习时间序列数据的时序特征,建立CNN-LSTM工业废水预测模型,并对废水水质中的化学需氧量(CODCr)、氨氮、总磷(TP)3项指标进行预测分析。结果表明,与CNN和LSTM两个基准模型相比,CNN-LSTM预测模型的平均绝对值误差率(MAE)和均方误差率(MSE)均较小,预测效果较优。该模型能较好地实现对工业废水出水水质的准确预测,可为工业废水水质的在线监测和精准控制提供有效的、可行的技术支持和决策依据。
|