首页 | 本学科首页   官方微博 | 高级检索  
     


Massive transformation and absolute stability
Authors:Milton Lima  Wilfried Kurz
Affiliation:(1) Present address: the Department of Materials, Swiss Federal Institute of Technology, Lausanne;(2) the Center for Laser and Applications, IPEN, 05508-900 Sao Paulo, Brazil;(3) the Department of Materials, Swiss Federal Institute of Technology, Lausanne, 1015 Lausanne EPFL, Switzerland
Abstract:Under carefully chosen conditions, solidification theory may be applied to solid-state transformations, and this has been done here for composition-invariant diffusion transformations. The predictions of the modeling are compared with isovelocity experiments in two iron systems, Fe-7.29 wt pct Cr and Fe-3.1 wt pct Ni. The ferrite to austenite phase transformation is used to demonstrate that stabilization of a planar transformation front at absolute stability is the natural lower velocity limit for a composition-invariant (massive) transformation. The results of the model, which includes nonequilibrium effects, clearly show that steady-state plane-front growth leading to composition invariance can be obtained at various temperatures depending on the growth velocity. In the lower velocity range, at the limit of absolute stability (of the order of 10 μm/s in the systems studied), the transformation interface moves under conditions of local equilibrium, and the temperature corresponds to the lower solvus temperature. At higher velocity (of the order of the interface diffusion rate, which in these systems is of the order of cm/s), the transformation is predicted to proceed at temperatures close to T 0. At even higher rates, atom attachment kinetic undercooling will decrease the transformation temperature with respect to T 0. In some cases, this temperature might even drop below the lower solvus. This article is based on a presentation made at the symposium entitled “The Mechanisms of the Massive Transformation,” a part of the Fall 2000 TMS Meeting held October 16–19, 2000, in St. Louis, Missouri, under the auspices of the ASM Phase Transformations Committee.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号