首页 | 本学科首页   官方微博 | 高级检索  
     


Enhanced capacity for lithium–air batteries using LaFe0.5Mn0.5O3–CeO2 composite catalyst
Authors:Tiejun Meng  Mahbuba Ara  Lixin Wang  Ratna Naik  K Y Simon Ng
Affiliation:1. Department of Chemical Engineering and Materials Science, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
2. Department of Physics and Astronomy, Wayne State University, 666 W. Hancock, Detroit, MI, 48201, USA
Abstract:LaFe0.5Mn0.5O3 and Ce-incorporated LaFe0.5Mn0.5O3 catalysts for Li–air batteries were synthesized by co-precipitation (CP) and micro-emulsion methods with the increasing Ce/(La+Ce) ratios from 0 to 0.5. Ce has a low solubility in LaFe0.5Mn0.5O3 perovskite lattices. Instead of forming single-phase La1?x Ce x Fe0.5Mn0.5O3 perovskite, a multi-phase LaFe0.5Mn0.5O3–CeO2 composite was obtained even for Ce/(La+Ce) = 0.05. Such catalysts were used in the cathode of Li–air batteries and the discharge test showed that LaFe0.5Mn0.5O3–CeO2 composite catalyst can effectively improve the specific capacity with the highest capacity of ~4700 mAh/g for Ce/(La+Ce) = 0.05 (by CP). There is also a 0.05 V increase in discharge voltage compared with the reference cell without catalyst, with the discharge voltage plateau at ~2.75 V. The overall ranking in terms of capacity was Ce/(La+Ce) = 0.05 > Ce/(La+Ce) = 0.1 > Ce/(La+Ce) = 0.5 > Ce/(La+Ce) = 0. The capacity increase for Ce/(La+Ce) = 0.05 and 0.1 samples is attributed to the enhanced oxygen storage/release capability and the increased conductivity with the incorporation of CeO2.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号