首页 | 本学科首页   官方微博 | 高级检索  
     


Song- and order-selective neurons develop in the songbird anterior forebrain during vocal learning
Authors:AJ Doupe  MM Solis
Affiliation:Keck Center for Integrative Neuroscience and Department of Psychiatry, University of California, San Francisco 94143-0444, USA.
Abstract:
The anterior forebrain (AF) pathway of songbirds has an essential but poorly understood function during song learning, a process requiring auditory experience. Consistent with a role in processing auditory information, two nuclei of the AF, the lateral magnocellular nucleus of the anterior neostriatum (IMAN) and Area X (X), contain some of the most complex auditory neurons known. In adult zebra finches, these neurons are strongly selective for both spectral and temporal properties of song: They respond more robustly to the bird's own song (BOS) than to songs of conspecific individuals, and they respond less well to BOS if it is played in reverse. IMAN and X neurons of young finches early in the process of song learning (30-45 days of age) are also song responsive, but lack the song and order selectivity present in adult birds. By an intermediate stage of learning (60 days), when birds have experience of both tutor song and their own developing (plastic) song, AF neurons have significant song and order selectivity for both tutor song and BOS (in this case, plastic song). The degree of BOS selectivity is still less than that found in adults, however. In addition, neurons at 60 days are heterogenous in their preference for BOS versus tutor song: Most prefer BOS, some prefer tutor song, and others respond equally to both songs. The selectivity of adult AF auditory neurons therefore arises rapidly during development in neurons that are initially unselective. These neurons are one of the clearest examples of experience-dependent acquisition of complex stimulus selectivity. Moreover, the neural selectivity for both BOS and tutor song at 60 days raises the possibility that experience of both songs during learning contributes to the properties of individual AF neurons.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号