首页 | 本学科首页   官方微博 | 高级检索  
     


Three dimensional analysis of self-structuring organic thin films using time-of-flight secondary ion mass spectrometry
Authors:Karl E. MayerhoferJakob Heier  Ylenia ManiglioBeat Andreas Keller
Affiliation:
  • EMPA Laboratory for Nanoscale Materials Science, Überlandstrasse 129 CH-8600 Dübendorf, Switzerland
  • Abstract:
    Selective sub-micrometer structuring of phase-separating organic semiconductor materials has recently got into focus for providing the opportunity of further improvements in optoelectronic device applications. Here we present a 3D-time-of-flight secondary ion mass spectrometry (3D-TOF-SIMS) depth profiling investigation on spin-coated blends consisting of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and a cationic cyanine dye (1,1′-diethyl-3,3,3′,3′-tetramethylcarbocyanine iodide). TOF-SIMS provides the required lateral and depth resolution to resolve material and molecular inhomogeneities and phase separation in the blend. The data are illustrating the three-dimensional arrangement of the substances involved and confirm results of earlier studies using atomic force microscopy, UV-vis spectroscopy and x-ray photoelectron spectroscopy, and which have shown well distinguishable morphological features. The formation of this domain structure has been found to be dependent on the absolute as well as the individual film thickness, in accordance with models based on thin liquid two-layer films. Honey-comb like primary structures with micrometer dimension were found in samples containing small amounts of dye molecules in the deposition solution. In this case a thin dye deposit on PCBM was detected, which is well separated from the dye layer at the substrate. For this type of sample, we discuss an extended model of film formation based on partial depletion of dye molecules during film solidification, resulting in two individual dye layers.
    Keywords:Secondary ion mass spectroscopy   Organic films   Thin films   Phase separation   Cyanine dye   Film morphology
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号