首页 | 本学科首页   官方微博 | 高级检索  
     


Weaver: Hexapod robot for autonomous navigation on unstructured terrain
Authors:Navinda Kottege  Paulo Borges  Philipp Beckerle  Margarita Chli
Affiliation:1. Robotics and Autonomous Systems Group, Pullenvale, QLD, Australia;2. Institute for Mechatronic Systems in Mechanical Engineering, Technische Universit?t Darmstadt, Darmstadt, Germany;3. Vision for Robotics Lab, Zürich, Switzerland
Abstract:Legged robots are an efficient alternative for navigation in challenging terrain. In this paper we describe Weaver, a six‐legged robot that is designed to perform autonomous navigation in unstructured terrain. It uses stereo vision and proprioceptive sensing based terrain perception for adaptive control while using visual‐inertial odometry for autonomous waypoint‐based navigation. Terrain perception generates a minimal representation of the traversed environment in terms of roughness and step height. This reduces the complexity of the terrain model significantly, enabling the robot to feed back information about the environment into its controller. Furthermore, we combine exteroceptive and proprioceptive sensing to enhance the terrain perception capabilities, especially in situations in which the stereo camera is not able to generate an accurate representation of the environment. The adaptation approach described also exploits the unique properties of legged robots by adapting the virtual stiffness, stride frequency, and stride height. Weaver's unique leg design with five joints per leg improves locomotion on high gradient slopes, and this novel configuration is further analyzed. Using these approaches, we present an experimental evaluation of this fully self‐contained hexapod performing autonomous navigation on a multiterrain testbed and in outdoor terrain.
Keywords:adaptive control  extreme environments  hexapod  impedance control  legged robots
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号