首页 | 本学科首页   官方微博 | 高级检索  
     


A robust variational approach to super-resolution with nonlocal TV regularisation term
Abstract:Abstract

Multi frame super-resolution (SR) reconstruction algorithms make use of complimentary information among low-resolution (LR) images to yield a high-resolution (HR) image. Inspired by recent development on the video denoising problem, we propose a robust variational approach for SR-based on a constrained variational model that uses the nonlocal total variation (TV) as a regularisation term. In our method, a weighted fidelity term is proposed to take into account inaccurate estimates of the registration parameters and the point spread function. Moreover, we introduce the nonlocal TV as a regularisation term in order to take into account complex spatial interactions within images. In this way, important features and fine details are enhanced simultaneously with noise reduction. Furthermore, an alternative nonlocal TV regularisation is proposed based on a better weight function which integrates gradient similarity and radiometric similarity. Experiments show the effectiveness and practicability of the proposed method.
Keywords:super-resolution  robust data fidelity  nonlocal total variation  regularisation.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号