Abstract: | AbstractAt the thin slab caster of Tata Steel, IJmuiden, mild cooling mould powders were introduced with the aim to control the mould heat transfer during casting. These mild cooling mould powders are characterised by specific values of basicity, solidification point and chemical composition. Application of these mould powders resulted in a redistribution of mould heat transfer during casting, i.e. a reduced and more stable mould heat transfer in the critical upper part of the mould and an increased mould heat transfer in the lower part of the mould. The average mould heat transfer and hence the shell thickness at mould exit are comparable to the standard powder. The application of mild cooling mould powders also resulted in improved solidification behaviour of the steel shell. A thinner chill zone with smaller thickness variations was observed. Furthermore, it was found that the mould taper required optimisation to match the changes in shrinkage behaviour to ensure uniform solidification. The use of mild cooling powders was observed to give an increase in mould friction. Mould thermal monitoring indicated that the solid slag films fractured (sheeting) in the upper part of the mould. However, no operational problems were reported, which indicate that the first 200 mm under the steel meniscus is essential for initial solidification and for the formation of a homogeneous steel shell. All these findings can be understood by considering the crystallisation properties of the mould slag, which include the cooling rate. Mild cooling has been shown to provide uniform heat transfer and adequate lubrication for high speed thin slab casting. |