首页 | 本学科首页   官方微博 | 高级检索  
     


Lipid composition of cultured endothelial cells in relation to their growth
Authors:Maud Cansell  Jean-Paul Gouygou  Jacqueline Jozefonvicz  Didier Letourneur
Affiliation:(1) Biochimie Molécules Marines, IFREMER, DRV/VP, Nantes, France;(2) Institut Galilée, Université Paris XIII, LRM, CNRS URA 502, Av. J.B. Clément, 93 430 Villetaneuse, France
Abstract:
Human endothelial cells in culture were examined in different growth conditions. The human endothelial cell line, EA.hy 926 cell line, was used and cells were studied either in exponential growth phase, at confluence, or growth-arrested by serum deprivation. Phospholipids were separated and analyzed by high-performance thin-layer chromatography, and their fatty acids were quantified by gas-liquid chromatography. No significant differences in the phospholipid distributions were found between exponentially growing and confluent endothelial cells in which phosphatidylcholine (PC) represented the major phospholipid. In comparison, serum-deprived cells exhibited higher proportions of sphingomyelin and lower content of PC. We also found that among the total lipids, cholesterol level for dividing endothelial cells was lower than for cells growth-arrested either by serum deprivation or by contact inhibition at confluence. The global fatty acid distribution was not affected by the growth conditions. Thus, oleate (18∶1n−9 and 18∶1n-7), palmitate (C16∶0), and stearate (C18∶0) were the main components of endothelial cell membranes. However, the fatty acid distributions obtained from each phospholipid species differed with the growth status. Altogether, the data indicated that subtle modulations of endothelial cell metabolism appear upon cell growth. The resulting membrane-dependent cellular functions such as cholesterol transport and receptor activities can be expected to be relevant for lipid trafficking within the vessel wall in vitro and in vivo.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号