首页 | 本学科首页   官方微博 | 高级检索  
     


Design of coated fuel particles for a hybrid fusion-fission system
Authors:RE Bullock
Affiliation:General Atomic Company, P.O. Box 81608, San Diego, CA 92138, USA
Abstract:Designs have been developed for coated ThO2 fuel particles to be used in a hybrid fusion-fission system that could be operated without reprocessing. The fresh fertile fuel particle would first be cycled through the blanket of a fusion reactor to breed 233U, which would then be ‘burned’ in a thermal fission reactor. The depleted fuel would then be refreshed in a second pass through the fusion reactor, and the process above repeated as many times as feasible. Designs of coated particles for up to three cycles through the hybrid system of reactors have been developed. The outer structural layer for these particles is made from vapor-deposited silicon carbide, because of its remarkable dimensional stability under fast neutron irradiation, and an inner layer of porous pyrocarbon is used to accommodate the buildup of gaseous reaction products inside the particle. The production of gaseous emission products from the interaction of high-energy fusion neutrons with coating materials and with the oxygen in the kernel contributes significantly to pressure vessel stresses in these coatings, whereas gaseous fission products alone dominate in conventional thermal reactors. The most stringent design for the three-cycle particle is identical in fuel loading to the reference fertile particle for an HTGR, which would constitute an ideal hybrid partner for the fusion reactor. Consideration is also given to coated-particle designs for the containment of the bred tritium used to fuel the D-T fusion reactor.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号