首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of notches on creep–fatigue behavior of a P/M nickel-based superalloy
Affiliation:1. Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology (NTNU), Norway;2. Nexans Norway, Innspurten 9, 0663 Oslo, Norway;3. Sintef Industry, Richard Birkelands vei 2B, 7031 Trondheim, Norway
Abstract:A study was performed to determine and model the effect of high temperature dwells on notch low cycle fatigue (NLCF) and notch stress rupture behavior of a fine grain LSHR powder metallurgy (P/M) nickel-based superalloy. It was shown that a 90 second (s) dwell applied at the minimum stress (“min dwell”) was considerably more detrimental to the NLCF lives than similar dwell applied at the maximum stress (“max dwell”). The short min dwell NLCF lives were shown to be caused by growth of small oxide blisters which caused preferential cracking when coupled with high concentrated notch root stresses. The cyclic max dwell notch tests failed mostly by creep accumulation, not by fatigue, with the crack origin shifting internally to a substantial distance away from the notch root. The classical von Mises plastic flow model was unable to match the experimental results while the hydrostatic stress profile generated using the Drucker–Prager plasticity flow model was consistent with the experimental findings. The max dwell NLCF and notch stress rupture tests exhibited substantial creep notch strengthening. The triaxial Bridgman effective stress parameter was able to account, with some limitations, for the notch strengthening by collapsing the notch and uniform gage geometry test data into a singular grouping.
Keywords:Superalloys  Dwell notch low cycle fatigue  Hydrostatic stress  Creep–fatigue  Environmental degradation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号