首页 | 本学科首页   官方微博 | 高级检索  
     


Feature extraction by learning Lorentzian metric tensor and its extensions
Authors:Risheng Liu [Author Vitae]  Kewei Tang [Author Vitae]
Affiliation:a Dalian University of Technology, Ganjingzi District, Dalian 116024, PR China
b Microsoft Research, Asia, Zhichun Road #49, Haidian District, Beijing 100190, PR China
Abstract:We develop a supervised dimensionality reduction method, called Lorentzian discriminant projection (LDP), for feature extraction and classification. Our method represents the structures of sample data by a manifold, which is furnished with a Lorentzian metric tensor. Different from classic discriminant analysis techniques, LDP uses distances from points to their within-class neighbors and global geometric centroid to model a new manifold to detect the intrinsic local and global geometric structures of data set. In this way, both the geometry of a group of classes and global data structures can be learnt from the Lorentzian metric tensor. Thus discriminant analysis in the original sample space reduces to metric learning on a Lorentzian manifold. We also establish the kernel, tensor and regularization extensions of LDP in this paper. The experimental results on benchmark databases demonstrate the effectiveness of our proposed method and the corresponding extensions.
Keywords:Feature extraction   Dimensionality reduction   Lorentzian geometry   Metric learning   Discriminant analysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号