IFS-CoCo: Instance and feature selection based on cooperative coevolution with nearest neighbor rule |
| |
Authors: | Joaquí n Derrac [Author Vitae],Salvador Garcí a [Author Vitae] |
| |
Affiliation: | a Department of Computer Science and Artificial Intelligence, CITIC-UGR (Research Center on Information and Communications Technology), University of Granada, 18071 Granada, Spain b Department of Computer Science. University of Jaén, 23071 Jaén, Spain |
| |
Abstract: | Feature and instance selection are two effective data reduction processes which can be applied to classification tasks obtaining promising results. Although both processes are defined separately, it is possible to apply them simultaneously.This paper proposes an evolutionary model to perform feature and instance selection in nearest neighbor classification. It is based on cooperative coevolution, which has been applied to many computational problems with great success.The proposed approach is compared with a wide range of evolutionary feature and instance selection methods for classification. The results contrasted through non-parametric statistical tests show that our model outperforms previously proposed evolutionary approaches for performing data reduction processes in combination with the nearest neighbor rule. |
| |
Keywords: | Evolutionary algorithms Feature selection Instance selection Cooperative coevolution Nearest neighbor |
本文献已被 ScienceDirect 等数据库收录! |