首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanical safety analysis for high burn-up spent fuel assemblies under accident transport conditions
Abstract:Abstract

Transport packages for spent fuel have to meet the requirements concerning containment, shielding and criticality as specified in the International Atomic Energy Agency regulations for different transport conditions. Physical state of spent fuel and fuel rod cladding as well as geometric configuration of fuel assemblies are, among others, important inputs for the evaluation of correspondent package capabilities under these conditions. The kind, accuracy and completeness of such information depend upon purpose of the specific problem. In this paper, the mechanical behaviour of spent fuel assemblies under accident conditions of transport will be analysed with regard to assumptions to be used in the criticality safety analysis. In particular the potential rearrangement of the fissile content within the package cavity, including the amount of the fuel released from broken rods has to be properly considered in these assumptions. In view of the complexity of interactions between the fuel rods of each fuel assembly among themselves as well as between fuel assemblies, basket, and cask body or cask lid, the exact mechanical analysis of such phenomena under drop test conditions is nearly impossible. The application of sophisticated numerical models requires extensive experimental data for model verification, which are in general not available. The gaps in information concerning the material properties of cladding and pellets, especially for the high burn-up fuel, make the analysis more complicated additionally. In this context a simplified analytical methodology for conservative estimation of fuel rod failures and spent fuel release is described. This methodology is based on experiences of BAM acting as the responsible German authority within safety assessment of packages for transport of spent fuel.
Keywords:FUEL RODS  HIGH BURN-UP  ACCIDENT CONDITIONS  MECHANICAL ANALYSIS
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号