首页 | 本学科首页   官方微博 | 高级检索  
     

基于提升小波变换和分形维数的声纳图像识别
引用本文:赵春晖,马梅真,尚政国. 基于提升小波变换和分形维数的声纳图像识别[J]. 声学技术, 2007, 26(5): 811-816
作者姓名:赵春晖  马梅真  尚政国
作者单位:哈尔滨工程大学信息与通信工程学院,哈尔滨,150001
基金项目:国家自然科学基金;教育部高等学校博士学科点专项科研基金;黑龙江省自然科学基金
摘    要:分形理论在图像的纹理识别中得到了广泛应用,由于分形维数不能反映图像的空间信息,容易造成误识别。针对该问题并结合声纳图像的特点,通过提升结构构造了Haar小波,并将提升小波变换同分形理论相结合,利用小波分解的多分辨率特点和分形维数的多尺度特性,提高图像的识别率。采用Levenberg-Marquardt(L-M)算法优化的BP神经网络对不同信噪比的声纳图像进行分类识别。实验结果表明,文中方法不论在识别率还是识别时间上均优于传统纹理识别方法。

关 键 词:提升小波  分形维数  声纳图像  识别
文章编号:1000-3630(2007)-05-0811-06
收稿时间:2006-10-08
修稿时间:2007-01-04

Sonar image recognition based on lifting scheme and fractal dimension
Zhao Chun-hui,Ma Mei-zhen and Shang Zheng-guo. Sonar image recognition based on lifting scheme and fractal dimension[J]. Technical Acoustics, 2007, 26(5): 811-816
Authors:Zhao Chun-hui  Ma Mei-zhen  Shang Zheng-guo
Affiliation:College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
Abstract:Fractal dimension has been widely used in the recognition of the texture images,but it lacks the ability to describe spatial information of images. In Considering the characteristic of a sonar image,the paper uses the lifting scheme to construct the Haar wavelet,and relates the lifting scheme with fractal d-imension. Amalgamation of multi-scales characteristics of wavelet transform and fractal dimension increased the recognition rate. LMBP neural network is used to recognize the sonar images of different SNR. The results show that the new method has a higher classification rate and is more efficient than traditional methods.
Keywords:lifting scheme  fractal dimension  sonar image  recognition
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《声学技术》浏览原始摘要信息
点击此处可从《声学技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号