首页 | 本学科首页   官方微博 | 高级检索  
     

基于多级特征并联的轻量级图像语义分割
作者姓名:周登文  田金月  马路遥  孙秀秀
作者单位:华北电力大学 控制与计算机工程学院,北京 102206
基金项目:中央高校基本科研业务费专项资金资助项目(2018ZD06)
摘    要:针对当前语义分割算法普遍具有网络结构复杂和计算开销巨大的问题,为了综合提高语义分割算法实时性和精确度,提出计算高效的基于多级特征并联网络(LSSN)的轻量级图像语义分割网络. 该算法综合考虑网络的参数量、运行速度和性能,能更好地应用到嵌入式设备和可移动设备上. 应用微调的深度卷积神经分类网络作为特征提取网络结构,提取网络不同深浅层语义和位置特征. 提出空洞残差增强模块和深度空洞空间金字塔模块分别处理来自特征提取基准网络的深层特征和浅层特征,并将深浅层特征按特定维度比例以并联的方式进行融合. 所提方法在PASCAL VOC 2012数据集上准确度(平均交并比)为77.13%,与当前具有高性能的语义分割算法和实时语义分割算法相比,能更好地平衡网络的实时性和精确度,具有更优的实用价值和性能效果.

关 键 词:深度学习  全卷积神经网络  语义分割  特征融合  空洞卷积  
本文献已被 CNKI 等数据库收录!
点击此处可从《浙江大学学报(工学版)》浏览原始摘要信息
点击此处可从《浙江大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号