首页 | 本学科首页   官方微博 | 高级检索  
     


Adult neurogenesis: from canaries to the clinic
Authors:SA Goldman
Affiliation:Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York 10021, USA.
Abstract:
Neuronal precursor cells persist in the adult vertebrate forebrain, residing primarily in the ventricular/subventricular zone (SZ). In vivo, SZ precursors yield progeny which may die or give rise to glia. Yet they may also generate neurons, which are recruited to restricted regions such as the avian telencephalon and mammalian olfactory bulb. The survival of neurons arising from adult progenitors is dictated by both the availability of a permissive pathway for migration and the environment into which migration occurs. In the songbird higher vocal center (HVC), both humoral and contact-mediated signals modulate the migration and survival of new neurons, through an orchestrated set of hormonally regulated paracrine interactions. New neurons of the songbird brain depart the SZ to enter the brain parenchyma by migrating upon radial guide fibers, which emanate from cell bodies in the ventricular epithelium. The radial guide cells coderive with new neurons from a common progenitor, which is widespread throughout the songbird SZ. Neural precursors are also widely distributed in the adult mammalian SZ, although it is unclear whether avian and mammalian progenitor cells are homologous: Whereas neuronal recruitment persists throughout much of the songbird forebrain, in mammals it is limited to the olfactory bulb. In humans, the adult SZ appears to largely cease neurogenesis in vivo, although it, too, can produce neurons in vitro. In both rats and humans, the differentiation and survival of neurons arising from the postnatal SZ may be regulated by access to postmitotic trophic factors. Indeed, serial application of fibroblast growth factor-2 (FGF-2) and brain-derived neurotrophic factor (BDNF) has allowed the generation and maintenance of neurons from the adult human SZ. This suggests the feasibility of inducing neurogenesis in the human brain, both in situ and through implanted progenitors. In this regard, using cell-specific neural promoters coupled to fluorescent reporters, defined progenitor phenotypes may now be isolated by fluorescence-activated cell sorting. Together, these findings give hope that structural brain repair through induced neurogenesis and neurogenic implants will soon be a clinical reality.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号