首页 | 本学科首页   官方微博 | 高级检索  
     


MHD Boundary Layer Flow of a Nanofluid Over an Exponentially Stretching Sheet in the Presence of Radiation
Authors:P. Loganathan  C. Vimala
Affiliation:Department of Mathematics, Anna University Chennai, Chennai, India
Abstract:Effects of thermal radiation on the steady laminar magnetohydrodynamic boundary layer flow of a nanofluid over an exponentially stretching sheet is studied theoretically. The governing boundary layer equations of the problem are formulated and transformed into ordinary differential equations, using a similarity transformation. The resulting ordinary differential equations are solved numerically by the shooting method. The effects of the parameters, namely, the magnetic parameter M, radiation parameter NR, and the solid volume fraction parameter ?, are discussed and presented in detail. Different types of nanoparticles namely, Cu, Ag, Al2O3, and TiO2 with the base fluid water, are studied. It is found that the nanoparticles with low thermal conductivity, TiO2 have better enhancement on heat transfer, compared to Cu, Ag, and Al2O3. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(4): 321–331, 2014; Published online 3 October 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21077
Keywords:MHD  nanofluid  nanoparticle  exponentially stretching sheet  radiation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号