首页 | 本学科首页   官方微博 | 高级检索  
     


A crucial role of O2 and O2 on mayenite structure for biomass tar steam reforming over Ni/Ca12Al14O33
Authors:Chunshan Li  Daisuke Hirabayashi  Kenzi Suzuki
Affiliation:aEcoTopia Science Institute, Nagoya University, Nagoya 464-8603, Japan
Abstract:Newly synthesized nickel calcium aluminum catalysts (Ni/Ca12Al14O33) were tested in a fixed bed reactor for biomass tar steam reforming, toluene as tar destruction model compound. Four catalysts (Ni/Ca12Al14O33) were prepared with Ni loading amount from 1, 3, 5 to 7 wt%, even 1% loading catalyst also showed excellent performance. Catalysts aged experiments in the absence (60 h on stream) and presence of H2S were characterized by BET, X-ray diffraction (XRD), and Raman spectra. It was observed that Ni/Ca12Al14O33 showed excellent sustainability against coke formation due to the “free oxygen” in the catalysts. It also exhibited higher H2S-poisoning resistance property compared to the commercial catalysts Ni/Al2O3 (5%) and Ni/CaO0.5/MgO0.5. Raman spectra revealed that “free oxygen O2 and O22−” in the structure of the catalysts could be substituted by sulfur then protected Ni poisoning on some degree, but reactivation experiments by O2 flowing showed that the sulfide Ni/Ca12Al14O33 was difficult to completely restore, incorporation of sulfur in the structure only partly regain by O2. The kinetic model proposes, as generally accepted, a first-order reaction for toluene with activation energy of 82.06 kJ mol−1 was coincident with the literature data. The Ni/Ca12Al14O33 catalyst was effective and relative cheap, which may be lead to reduction in the cost of hot gas cleaning process.
Keywords:Biomass tar  Toluene steam reforming  Ni/Ca12Al14O33  Coke-resistance  Sulfur poisoning
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号