首页 | 本学科首页   官方微博 | 高级检索  
     

分布式目标检测融合决策优化算法
引用本文:胡学海,王厚军,黄建国. 分布式目标检测融合决策优化算法[J]. 电子科技大学学报(自然科学版), 2013, 42(3): 375-379. DOI: 10.3969/j.issn.1001-0548.2013.03.011
作者姓名:胡学海  王厚军  黄建国
作者单位:1.电子科技大学自动化工程学院 成都 610054
摘    要:现有分布式目标检测系统的优化一般采用穷举法、SFFO算法或SOFF算法,计算复杂,且优化结果强烈依赖初值。该文采用蚁群算法和爬山变异算法结合,提出爬山变异蚁群算法及同步优化传感器判决门限和融合中心决策规则,理论上是一种全局最优算法。数值试验的结果表明,和相关算法相比,融合系统的贝叶斯风险降低了15%~20%,且优化结果不依赖初值,计算复杂度低于其他算法。

关 键 词:贝叶斯理论   分布检测   分布式融合   传感器   目标检测
收稿时间:2011-10-14

Optimization Algorithm for Distributed Target Detection Integration Decision
HU Xue-hai , WANG Hou-jun , HUANG Jian-guo. Optimization Algorithm for Distributed Target Detection Integration Decision[J]. Journal of University of Electronic Science and Technology of China, 2013, 42(3): 375-379. DOI: 10.3969/j.issn.1001-0548.2013.03.011
Authors:HU Xue-hai    WANG Hou-jun    HUANG Jian-guo
Affiliation:1.School of Automation Engineering,University of Electronic Science and Technology of China Chengdu 610054
Abstract:Existing distributed object detection systems generally use the enumeration method, SFFO method or SOFF method. These methods are computationally complex, and their optimization results strongly depend on initial value. A climbing variation ant colony algorithm is proposed in this paper. The algorithm is used to simultaneous optimization of sensor decision threshold and the fusion center decision rules. The numerical results show that the fusion system reduces Bayes risk about 15%~20%, the optimization results do not depend initial value, and the computational complexity is lower than the other algorithms.
Keywords:Bayes theory  distributed detection  distributed fusion  sensor  target identification
本文献已被 万方数据 等数据库收录!
点击此处可从《电子科技大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《电子科技大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号