首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进差别矩阵属性约简的聚合釜粗糙集-神经网络故障诊断
引用本文:高淑芝,高宪文,王介生,费鹏程. 基于改进差别矩阵属性约简的聚合釜粗糙集-神经网络故障诊断[J]. 化工学报, 2011, 62(3): 759-765
作者姓名:高淑芝  高宪文  王介生  费鹏程
作者单位:东北大学信息科学与工程学院;沈阳化工大学信息工程学院
基金项目:国家自然科学基金重点项目,教育部基本科研业务费项目研究生科研创新项目
摘    要:引言聚氯乙烯树脂(PVC)是重要的有机合成材料,其产品具有良好的物理性能和化学性能,广泛应用于工业、建筑、农业、电力、公用事业等领域.聚合釜则是聚氯乙烯生产装置的关键设备,聚合釜能否稳定运行直接关系到整个聚氯乙烯生产装置的运行状况.

关 键 词:聚合釜  故障诊断  粗糙集  差别矩阵  BP神经网络

Rough set-neural network fault diagnosis of polymerization based on improved attribute reduction algorithm of discernibility matrix
GAO Shuzhi,GAO Xianwen,WANG Jiesheng,FEI Pengcheng. Rough set-neural network fault diagnosis of polymerization based on improved attribute reduction algorithm of discernibility matrix[J]. Journal of Chemical Industry and Engineering(China), 2011, 62(3): 759-765
Authors:GAO Shuzhi  GAO Xianwen  WANG Jiesheng  FEI Pengcheng
Abstract:Aiming at the real-time fault diagnosis and optimized monitoring requirements of the polymerizer of PVC production process, a real-time polymerizer fault diagnosis strategy was proposed based on rough set (RS)theory with improved discernibility matrix and back propagation (BP)neural network.The improved discernibility matrix was adopted to reduce the attributes of rough set in order to reduce the input dimensionality of fault characteristics effectively.Fuzzy C-means clustering algorithm was used to discrete the continuous variables of the decision table.Then Levenberg-Marquardt BP neural network was trained according to the reduced decision table in order to decide the configuration parameters of the proposed polymerizer fault diagnosis model.Thus the classification of the fault patterns was to realize the nonlinear mapping from fault symptom set to polymerizer fault set according to a set of symptoms.Polymerizer fault diagnosis simulation experiments were performed by combining with industry history data.Simulation results showed the effectiveness of the proposed fault diagnosis method based on rough set and BP neural network.
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《化工学报》浏览原始摘要信息
点击此处可从《化工学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号