首页 | 本学科首页   官方微博 | 高级检索  
     


Dendrite‐Free Lithium Plating Induced by In Situ Transferring Protection Layer from Separator
Authors:Zhiyu Hu  Fengquan Liu  Jian Gao  Weidong Zhou  Hong Huo  Jianjun Zhou  Lin Li
Abstract:
Lithium (Li) metal anodes are regarded as a promising pathway to meet the rapidly growing requirements on high energy density cells, owing to their highest gravimetric capacity (3840 mAh g?1) and their lowest redox potential. The application of Li metal anodes, however, is still hindered by undesired dendrites formation and endless consumption of liquid electrolyte due to a continuous reaction on interface of electrolyte/Li‐metal without a stable solid–electrolyte–interface (SEI) layer. A stable protection layer is formed on Li metal anode by in situ transferring the coating layer from polymer separator. The Li anode protection strategy is developed with an in situ formed protection layer transferred through the reduction of a coating layer on polymer separator. A PbZr0.52Ti0.48O3 (PZT) coating layer on polypropylene (PP) separator is reduced by Li metal anode to produce a Pb metal containing composite layer, which could form Pb–Li alloy and adhere to the surface of Li metal anode after the reaction and improves the Li plating/stripping efficiency owing to the formation of a more homogenized electric field. Both the Li/Li symmetric cells and LiFePO4/Li cells with this PZT precoated PP separators exhibit significantly improved Coulombic efficiency and cycling life.
Keywords:in situ transfer  lithium dendrites  lithium metal anodes  protective layers
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号