首页 | 本学科首页   官方微博 | 高级检索  
     


Cation distribution of high-performance Mn-substituted ZnGa2O4 microwave dielectric ceramics
Authors:Xiaochi Lu  Wenjie Bian  Chengfa Min  Zhenxiao Fu  Qitu Zhang  Haikui Zhu
Affiliation:1. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, PR China;2. Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, PR China;3. State Key Laboratory of Advanced Materials and Electronic Components, Guangdong Fenghua Advanced Technology Holding Co., Ltd, Zhaoqing 526020, PR China
Abstract:In current study, only 5?mol% Mn2+ was applied to fabricate high performance microwave dielectric ZnGa2O4 ceramics, via a traditional solid state method. The crystal structure, cation distribution and microwave dielectric properties of as-fabricated Mn-substituted ZnGa2O4 ceramics were systematically investigated. Mn2+-substitution led to a continuous lattice expansion. Raman, EPR and crystal structure refinement analysis suggest that Mn2+ preferentially occupies the tetrahedral site and the compounds stay normal-spinel structure. The experimental and theoretical dielectric constant of Zn1-xMnxGa2O4 ceramics fit well. In all, this magnetic ion, Mn2+, could effectively adjust the τf value to near zero and double the quality factor from 85,824?GHz to 181,000?GHz of Zn1-xMnxGa2O4 ceramics at the meantime. Zn1-xMnxGa2O4 (x?=?0.05) ceramics sintered at 1400?°C for 2?h exhibited excellent microwave dielectric properties, with εr =?9.7(@9.85?GHz), Q?f?=?181,000?GHz, tanδ?=?5.44?×?10?5,and τf =???12?ppm/°C.
Keywords:Mn-substitution  Spinel  Dielectric properties  Cation distribution
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号