首页 | 本学科首页   官方微博 | 高级检索  
     

基于GNSA多尺度模型的人脸识别
引用本文:赵明华,游志胜,赵永刚,吕学斌,穆万军. 基于GNSA多尺度模型的人脸识别[J]. 光电工程, 2005, 32(2): 93-96
作者姓名:赵明华  游志胜  赵永刚  吕学斌  穆万军
作者单位:四川大学计算机学院图形图像研究所,四川,成都,610064;西南石油学院,四川,成都,610500
摘    要:考虑近似图像信息和细节图像信息,提出了 GNSA 多尺度模型。该模型利用具有 1 个隐含层和 50 个隐单元的神经网络建立不同尺度图像间的映射关系;使用反向传播算法训练神经网络,确定这种映射关系;根据该映射关系由低分辨力图像估计高分辨力图像。采用亮度相似性和对比度相似性量化估计图像与目标图像间的相似程度。实验表明,以该模型分析得到的两种相似性分别为 89.907%和 96.196%;以该模型为基础的人脸识别系统对光照具有很好的鲁棒性。

关 键 词:模式识别  人脸识别  小波变换  多尺度分析  神经网络尺度自回归
文章编号:1003-501X(2005)02-0093-04
收稿时间:2004-07-30
修稿时间:2004-07-30

Face recognition based on GNSA multi-scale model
ZHAO Ming-hua,YOU Zhi-sheng,ZHAO Yong-gang,Lü Xue-bin,MU Wan-jun. Face recognition based on GNSA multi-scale model[J]. Opto-Electronic Engineering, 2005, 32(2): 93-96
Authors:ZHAO Ming-hua  YOU Zhi-sheng  ZHAO Yong-gang  Lü Xue-bin  MU Wan-jun
Abstract:A multi-scale model named GNSA is proposed under the condition of taking account of approximate image information and detailed image information. The mapping relationship among different scale images is established by using a neural network with a hidden layer and 50 hidden units. This mapping relation is determined by training neural network with a back-propagation algorithm, which is utilized to estimate images at finer resolution from coarser versions. Similarity in brightness and similarity in contrast are used to gauge the degree of similarity between the estimated images and target images. The experiments show that two similarities between images estimated by GNSA model and target images are 89.907% and 96.196% respectively. The face recognition system based on the model has a good robustness for light illumination.
Keywords:Pattern recognition  Face recognition  Wavelet transform  Multi-scale analysis   Neural networks scale autoregressive
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号