首页 | 本学科首页   官方微博 | 高级检索  
     

基于晶体图卷积神经网络的晶格能回归模型
作者姓名:郑欣雨  任泽华  周利  柴士阳  吉旭
作者单位:四川大学化学工程学院
基金项目:国家自然科学基金项目(22308228);
摘    要:晶格能是决定晶体热力学稳定性的关键物理性质,对药物多晶型稳定性的筛选具有指导意义。晶格能的获取方式通常为实验试错和基于分子/量子力学的理论计算,对于数量庞大的晶型结构,两种方法均费时费力。提出一种基于密度泛函理论(density functional theory,DFT)和晶体图卷积神经网络(crystal graph convolutional neural networks,CGCNN)的晶格能回归模型。首先采用自洽屏蔽多体色散校正的DFT方法计算晶格能,建立包含酸、醇、酰胺、氨基酸、酸酐等248种晶型的晶格能数据集;基于所建立的数据集,采用CGCNN进一步建立晶型和晶格能之间的定量回归模型,该模型训练集和测试集的MAPE分别为1.24%和5.04%,R2分别为0.9978和0.9750,表明该模型具有较好的预测效果,可以为高通量筛选稳定的晶型提供理论指导。

关 键 词:晶格能  多晶型  密度泛函理论  神经网络  回归模型  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号