首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于连接度的空间线对象聚类算法
引用本文:柳盛,吉根林,李文俊. 一种基于连接度的空间线对象聚类算法[J]. 计算机科学, 2011, 38(8): 179-181,204
作者姓名:柳盛  吉根林  李文俊
作者单位:(南京师范大学虚拟地理环境教育部重点实验室 南京210046);(南京师范大学计算机科学与技术学院 南京210046)
基金项目:本文受国家自然科学基金(40871176)资助。
摘    要:
目前大多数聚类算法主要针对空间点对象且未考虑空间对象的拓扑关系。利用空间线对象相交关系定义了空间线对象连接度,提出一种基于连接度的空间线对象聚类算法SLCC(Spatial Lines Clustering Algorithm Based on Connectivity)。该算法以K-means算法为基础,以空间线对象的连接度作为“距离”进行空间线对象聚类。实验结果表明,SLCC算法能实现空间线对象的空间聚类,并具有较高的效率。

关 键 词:连接度,空间聚类,拓扑关系,线相交

Spatial Lines Clustering Algorithm Based on Connectivity
LIU Sheng,JI Gen-lin,LI Wen-jun. Spatial Lines Clustering Algorithm Based on Connectivity[J]. Computer Science, 2011, 38(8): 179-181,204
Authors:LIU Sheng  JI Gen-lin  LI Wen-jun
Affiliation:(Key Laboratory of Virtual Geographic Environment of Ministry of Education,Nanjing Normal University,Nanjing 210046,China);(School of Computer Science and Technology,Nanjing Normal University,Nanjing 210046,China)
Abstract:
At present,most spatial clustering algorithms focus on spatial points without considering spatial topological relations of spatial objects. The spatial line connectivity was defined by line intersection relations. Algorithm SLCC was proposed for clustering spatial lines based on spatial line connectivity. This algorithm, which is based on K-means, selects the spatial line connectivity as the distance between lines to cluster spatial lines. The experiment results show the algorithm is effective and efficient
Keywords:Spatial line connectivity  Spatial clustering   Topological rclations  Line intersection
点击此处可从《计算机科学》浏览原始摘要信息
点击此处可从《计算机科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号