首页 | 本学科首页   官方微博 | 高级检索  
     


Detailed kinetic modelling of non-catalytic ethanol reforming for SOFC applications
Authors:G Vourliotakis  G Skevis  MA Founti
Affiliation:aLaboratory of Heterogeneous Mixtures and Combustion Systems, Thermal Engineering Section, School of Mechanical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Polytechnioupoli-Zografou, Athens 15780, Greece
Abstract:Ethanol is a particularly attractive alternative fuel for automotive and stationary applications. Due to its high hydrogen content, ethanol can also be utilized for hydrogen production in SOFC systems. The present study assesses the potential of non-catalytic ethanol reforming using a detailed chemical kinetic approach. A recently developed comprehensive detailed mechanism for ethanol oxidation, pyrolysis and combustion is implemented and validated against data from ethanol reformers. Comparisons between computations and experimental major and intermediate species data are shown to be satisfactory. Chemical aspects of the fuel reforming process are thoroughly investigated through rate-of-production and sensitivity analyses with particular emphasis on syngas and potential carbonaceous deposit formation. An assessment of ethanol as a primary fuel versus conventional fuels with similar hydrogen content is also numerically performed. It is shown that ethanol features higher conversion efficiency to syngas than methane. Soot precursor chemistry is shown to be largely dependant both on fuel and reactor operating conditions. Finally, the work demonstrates the limitations of the thermodynamic equilibrium approach.
Keywords:Ethanol reforming  T-POX  Detailed chemistry  Reforming efficiency  Soot precursors
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号