摘 要: | 针对室内空间局限性造成的移动机器人路径规划难度提升问题,文章分析了机器人室内移动中转弯、启停等运动特征,为获得最优规划路径引入了粒子群算法(particle swarm optimization, PSO),同时为改善经典算法中收敛度低,易早熟等问题,首先使用收敛因子、线性递减、非线性凹函数、随机分布方式等对PSO惯性权重的选取进行了讨论,并结合三次样条插值方法、选取罚函数作为适应度函数等对PSO进行了算法改进,最后,以实验室作为室内环境背景进行了仿真实验,并与经典的PSO路径规划方法进行了对比,实验结果表明,文章中改进的PSO路径规划方法精度高于经典PSO方法5%,平均寻优时间比经典PSO的少5s左右,能够有效的提高规划路径的平滑度,对于室内环境中机器人路径规划具有良好的实时性和有效性。
|