首页 | 本学科首页   官方微博 | 高级检索  
     


Distance-based classification of handwritten symbols
Authors:Oleg Golubitsky  Stephen M. Watt
Affiliation:(3) Dept. Math. Engin. and Information Physics Graduate School of Engin. Univ. Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
Abstract:We study online classification of isolated handwritten symbols using distance measures on spaces of curves. We compare three distance-based measures on a vector space representation of curves to elastic matching and ensembles of SVM. We consider the Euclidean and Manhattan distances and the distance to the convex hull of nearest neighbors. We show experimentally that of all these methods the distance to the convex hull of nearest neighbors yields the best classification accuracy of about 97.5%. Any of the above distance measures can be used to find the nearest neighbors and prune totally irrelevant classes, but the Manhattan distance is preferable for this because it admits a very efficient implementation. We use the first few Legendre-Sobolev coefficients of the coordinate functions to represent the symbol curves in a finite-dimensional vector space and choose the optimal dimension and number of bits per coefficient by cross-validation. We discuss an implementation of the proposed classification scheme that will allow classification of a sample among hundreds of classes in a setting with strict time and storage limitations.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号