首页 | 本学科首页   官方微博 | 高级检索  
     

支持向量机训练算法综述
引用本文:姬水旺 姬旺田. 支持向量机训练算法综述[J]. 微机发展, 2004, 14(1): 18-20
作者姓名:姬水旺 姬旺田
作者单位:陕西移动通信有限责任公司,陕西移动通信有限责任公司 陕西西安710082,陕西西安710082
摘    要:训练SVM的本质是解决二次规划问题,在实际应用中,如果用于训练的样本数很大,标准的二次型优化技术就很难应用。针对这个问题,研究人员提出了各种解决方案,这些方案的核心思想是先将整个优化问题分解为多个同样性质的子问题,通过循环解决子问题来求得初始问题的解。由于这些方法都需要不断地循环迭代来解决每个子问题,所以需要的训练时间很长,这也是阻碍SVM广泛应用的一个重要原因。文章系统回顾了SVM训练的三种主流算法:块算法、分解算法和顺序最小优化算法,并且指出了未来发展方向。

关 键 词:统计学习理论  支持向量机  训练算法
文章编号:1005-3751(2004)01-0018-03
修稿时间:2003-06-13

A Tutorial Survey of Support Vector Machine Training Algorithms
JI Shui-wang,JI Wang-tian. A Tutorial Survey of Support Vector Machine Training Algorithms[J]. Microcomputer Development, 2004, 14(1): 18-20
Authors:JI Shui-wang  JI Wang-tian
Abstract:Training SVM can be formulated into a quadratic programming problem. For large learning tasks with many training examples, off-the-shelf optimization techniques quickly become intractable in their memory and time requirements. Thus, many efficient techniques have been developed. These techniques divide the original problem into several smaller sub-problems. By solving these sub-problems iteratively, the original larger problem is solved. All proposed methods suffer from the bottleneck of long training time. This severely limited the widespread application of SVM. This paper systematically surveyed three mainstream SVM training algorithms: chunking, decomposition, and sequential minimal optimization algorithms. It concludes with an illustration of future directions.
Keywords:statistical learning theory  support vector machine  training algorithms
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号