首页 | 本学科首页   官方微博 | 高级检索  
     


Design of a novel double doping polysilicon gate MOSFET
Affiliation:Institute of Electronic and Information Project, Anhui University, Hefei 230601, China
Abstract:In this paper, a novel design of the double doping polysilicon gate MOSFET device is proposed, which has a p+ buried layer near the drain, and relatively thicker D-gate oxide film (DDPGPD MOSFET). The detailed fabrication process for this device is designed using process simulation software called TSUPREM, and the device structure plan is further used in MEDICI simulation. The effect of gate doping concentration is investigated, and it is found that the device Vth is only influenced by the S-gate; furthermore, the device can get a larger driving current by increasing the doping concentration of D-gate. Compared to other conventional DDPG MOSFETs, the short-channel effects (SCEs) including the off-state current, the gate leakage current and the drain induced barrier lowering effect (DIBL) can be effectively suppressed by the p+ buried layer and thicker D-gate oxide film. Additionally, the other parameters of the device such as the driving current are not seriously affected by the proposed design modifications.
Keywords:p+ buried layer  Thicker D-gate oxide film  Off-state current  Gate leakage current  DIBL
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号